SİTEMİZE DESTEK OLUN

mobil-odeme

Bildiğiniz gibi sitemiz ücretsizdir.Emek harcayarak oluşturduğumuz sitemize sizden bir SMS ile destek bekliyoruz.

Aşağıdaki butonlara tıklayarak istediğiniz miktarda bize katkıda bulunabilirsiniz.

3tl

10tl

50tl

100tl


İlköğretim Matematik

Lise Matematik

Matematik

harfli ifadeler

Lise Matematik - Açıköğretim Matematik - KPSS Matematik Konu Anlatım ve Soru Videolarını İzlemek İçin TIKLA

HARFLİ İFADELER NE DEMEKTİR?
HARFLİ İFADE FORMÜLLERİ NELERDİR?


ÇARPANLARA AYIRMA

ORTAK ÇARPAN PARANTEZİNE ALMA
A(x) . B(x) ± A(x) . C(x) = A(x) . [B(x) ± C(x)]

En az dört terimi olan ifadeler ortak çarpan
 parantezine alınacak biçimde gruplandırılır,
 sonra ortak çarpan parantezine alınır.

 
 
 
 

ÖZDEŞLİKLER
1. İki Kare Farkı - Toplamı
 I) a2 – b2 = (a – b) (a + b)
II) a2 + b2 = (a + b)2 – 2ab  ya da
    a2 + b2 = (a – b)2 + 2ab  dir.
 
2. İki Küp Farkı - Toplamı
   I) a3 – b3 = (a – b) (a2 + ab + b2 )
  II) a3 + b3 = (a + b) (a2 – ab + b2 )
 III) a3 – b3 = (a – b)3 + 3ab (a – b)
IV) a3 + b3 = (a + b)3 – 3ab (a + b)

 3. n. Dereceden Farkı - Toplamı
I) n bir sayma sayısı olmak üzere,
   xn – yn = (x – y) (xn – 1 + xn – 2y + xn – 3 y2
 + ... + xyn – 2 + yn – 1) dir.
II) n bir tek sayma sayısı olmak üzere,
    xn + yn = (x + y) (xn – 1 – xn – 2y + xn – 3 y2
 – ... – xyn – 2 + yn – 1) dir.

 4. Tam Kare İfadeler
I) (a + b)2 = a2 + 2ab + b2
(a + b)2 = (a – b)2 + 4ab
II) (a – b)2 = a2 – 2ab + b2
(a – b)2 = (a + b)2 – 4ab
III) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
IV) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)
 
5. (a ± b)n nin Açılımı
Pascal Üçgeni
 
(a + b)n açılımı yapılırken, önce a nın
n . kuvvetten başlayarak azalan, b nin 0 dan
başlayarak artan kuvvetlerinin çarpımları
yazılıp toplanır.www.matematikcifatih.tr.gg
Sonra n nin Paskal üçgenindeki karşılığı
bulunarak kat sayılar belirlenir.
(a – b)n yukarıdaki biçimde yapılır ancak b nin;
çift kuvvetlerinde terimin önüne (+),
tek kuvvetlerinde terimin önüne
(–) işareti konulur.

• (a + b)3 = a3 + 3a2b + 3ab2 + b3
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4

 
 
 
 
 



 

ÖRNEKLER:

1-)ax+bx+ay+by=(ax+bx)+(ay+by)
                           =x(a+b)+y(a+b)
                           =(a+b).(x+y)
 
2-)x-ax+2x-2a=(x-ax)+(2x-2a)
                       =x(x-a)+2(x-a)
                       =(x-1).(a-1)
3-)ax-a-x+1=(ax-a)+(-x+1)
                   =a(x-1)-1(x-1)
                   =(x-1).(a-1)
Dost Siteler : Videolu Matematik | Videolu Lise Matematik | Tv Kanalları Canlı İzle | Turkey Travel Guide | Gizli İlimler | Salihli Eğitim | Çörek Otunun Yararları | LeEnglish | Canlı Tv İzle | Facebook Sayfamız | Twitter Sayfamız